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[1] In drainage basin evolution models the implementation of sediment transport and
sediment balance is constrained by numerical instabilities. In order to overcome these
difficulties an implicit finite difference method is proposed. The method simultaneously
adjusts the elevation at each node of the numerical grid, is unconditionally stable, and
significantly reduces the computational time. The performance of the method is tested and
briefly discussed with a numerical example. INDEX TERMS: 1824 Hydrology: Geomorphology

(1625); 1815 Hydrology: Erosion and sedimentation; 3230 Mathematical Geophysics: Numerical solutions;

3210 Mathematical Geophysics: Modeling; KEYWORDS: drainage basin, landscape evolution, sediment

transport, detached limited model, river network

1. Introduction

[2] In recent years, computational models based on
partial differential equations have been developed to study
the evolution of drainage basin landscapes. These models
mimic key processes of landscape evolution, such as sedi-
ment transport in alluvial and bedrock channels, soil creep,
rain splash, with a few simplified equations derived from
general conservation principles. The equations are discre-
tized on numerical grids and suitable algorithms link the
quantities at each node.
[3] In the simplest models, only two processes are present:

a diffusive soil creep plus advective sediment transport in
channels [Willgoose et al., 1991a; Rinaldo et al., 1995;
Howard, 1994]. The alluvial sediment transport is formulated
as a function of drainage area, a surrogate for discharge, and
slope. When calculating sediment budgets at each node, the
high variability of drainage area amplifies small variations in
bottom slope leading to a solution that requires very small
time steps for numerical stability, thus limiting the model
applicability for large spatial and temporal domains.
[4] Different techniques have been developed to overcome

this obstacle, but none of them have the flexibility and the
rigor that such an important problem requires. Rinaldo et al.
[1995] modeled the alluvial part with a threshold-limiting
formulation, in which sediment is removed in the landscape
until the bed stress is less than the critical shear stress, but
deposition does not occur in the alluvial channels, and the
model cannot follow the fate of sediment once it arrives in the
channel network. Willgoose et al. [1991] modified the
equations utilizing a local asymptotic solution, but the
improvement is limited, and the modified equation depends
only on the elevation in the neighborhood of the considered
node, whereas all the nodes of an alluvial channel have to be
modified synchronously to have a realistic solution.

[5] In this direction the approach of Howard [1994] is
more sound. A steady state solution is utilized to adjust at
the same time the slope of all the nodes belonging to a
channel. However, the method involves extensive book-
keeping, and since it refers to steady state channel gradients,
it is unable to follow transient dynamics.
[6] Here a new implicit finite difference method is

presented. The method solves the original equations for
the alluvial transport adjusting simultaneously the bottom
elevation in each node of the domain.

2. Method

[7] In the present analysis we focus on the sediment
transport and drainage basin evolution due to alluvial
channels. This notwithstanding, the same formulation can
be applied, with minor modifications, to other processes
responsible for landscape form and evolution.
[8] In drainage basin models the basin area is partitioned

in elements, with a node at the center of each element.
Variations in elevation are then computed with a mass
balance in each node:

@z*

@t*
¼ 1

a*

X
Q*sb; ð1Þ

where z* is the elevation, a* is the basin area pertaining to the
node, Qsb* is the volumetric sediment discharge entering or
leaving the node from one of the neighboring nodes (the
superscript asterisk indicates dimensional quantities). The
sediment discharge can be derived from sediment transport
laws and expressed in the form [Howard, 1994; Willgoose
et al., 1991a]

Q*sb ¼ KA*mS*p ¼ KA*m
�z*

�x*

� �p

; ð2Þ

where K is a sediment transport parameter, A* is the
drainage area at the point, S* is the bottom slope, p and m
are constant coefficients, �x is the distance between two
nodes. The area A* is a surrogate variable for the mean
annual discharge at a site and it is determined in the
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following way: first, each node is linked to one of the
neighboring nodes following the steepest gradient; the
node is thus draining in this direction. Second the drainage
area is computed as the sum of the areas pertaining to nodes
that, directly or indirectly, drain in the considered one. The
alluvial sediment is then supposed to be transported
following the drainage directions. For simplicity, in
equation (2) we did not introduce a threshold shear stress
for sediment transport, but the method presented is valid for
any formulation of the sediment transport law. As by
Willgoose et al. [1991b], we nondimensionalize equations
(1) and (2) utilizing the following expressions:

z* ¼ Zz; x* ¼ Lx; a* ¼ L2a;

A* ¼ L2A; S* ¼ Z

L
S; t* ¼ Tt

ð3Þ

where z, x, a, A, S, and t are the nondimensional elevation,
spatial coordinate, basin area pertaining to the node,
drainage area, slope, and time, respectively. Z, L, and T
are the corresponding scales for elevation, length, and time.
[9] Equation (1) can then be expressed as a function of

elevation and drainage area of the neighboring points:
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with the nondimensional number H equal to

H ¼ KZp�1TL2m�p�2: ð5Þ

In equation (4) j are the points that are draining to the point i,
and k is the point where i is draining to (Figure 1). The
number j depends on how the drainage area is aggregated on
the grid. In the formulation adopted here we have an outgoing
sediment discharge to only one of the neighboring nodes, but

the method can be easily extended to models where discharge
and sediments is coming out in more than one direction
[Tarboton, 1997; Costacabral and Burges, 1994].
[10] In the standard, explicit scheme used to solve equa-

tion (4) the right term is evaluated at the current time n,
while the time derivative is expressed as a forward differ-
ence in time. Naming the right-hand term of equation (4) f,
the explicit scheme is

znþ1
i � zni
�t

¼ f ðzn;AnÞ; ð6Þ

where the quantities calculated at the time step n are utilized
to calculate the elevation at the time step n + 1. Howard
[1994] and Willgoose et al. [1991a, 1991b] pointed out that
this method requires very small time steps to be stable, with
a high computational burden. Here we explore the
performance of an implicit method, evaluating the right-
hand term at time n + 1. A first simplification adopted
consists in calculating the drainage area at time n, in that
way only the slope in equation (4) is an unknown function
of the elevation at time n + 1. Moreover, we linearize the
function f with a Taylor expansion around its value at t = n.
The implicit method can then be written as
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applying this formulation to equation (4) and rearranging
the terms, we derive an equation for each node i,
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where the quantities Fj
n, Fi

n, and C are evaluated at the time
step n and are
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If R is the number of nodes, equation (8) represents a system
of R linear equations in the unknown elevations zi

n + 1 at
time n + 1. The R � R matrix related to the system is
symmetric and definite positive. Furthermore, the matrix is
sparse since each node is linked only to the neighboring
nodes, so not more than nine elements among the R
elements in the line i of the matrix are different than zero.
The storing of the matrix is effectively performed by
retaining only the nonzero elements and their location. The
system is then solved with a preconditioned conjugate

Figure 1. Computational mesh.

21 - 2 FAGHERAZZI ET AL.: TECHNICAL NOTE



gradient method, where the preconditioning matrix is
calculated with the Kershaw’s incomplete factorization of
the original matrix decomposed with the Cholesky method
[Axelsson, 1994].

3. Results

[11] The method is unconditionally stable; however,
errors are introduced when a large time step is adopted.
As a matter of fact, the linearization of the right-hand term
in equation (7) is only valid for small time steps, when
changes in elevation are limited. Most importantly, the
method utilizes a ‘‘frozen’’ drainage area each time step,
without tracking its variations caused by elevation changes.
To test the validity of the method, we compare results
obtained with the implicit and the explicit schemes for a
drainage basin evolution example. The domain is a 100 �
100 square Cartesian grid, and the length scale L is equal to
the mesh size. The parameters utilized in the simulation are
H = 100, m = 1.4, and p = 2.1, corresponding to the
parameters by Howard [1994, Figure 18]. The starting
topography is a tilted plane in the vertical direction with a
constant gradient of 0.05 to which is added small random
elevations selected from a normal distribution with zero
mean and standard deviation equal to 0.1. The upper, left,
and right boundaries are impermeable (neither sediment flux

Figure 4. Simulation 1: (a) initial conditions, (b) changes
in elevation distribution at t = 0.005 using the explicit
formulation (10000 iterations), and (c) changes in elevation
distribution at t = 0.005 using the implicit formulation (10
iterations).

Figure 3. Number of nodes changing drainage direction in
each time step. The data are averaged over 20 steps to
eliminate short-term fluctuations.

Figure 2. Initial and boundary conditions for the test case.
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nor discharge are allowed through them), whereas the lower
boundary is kept at a constant elevation (Figure 2).
[12] The explicit method requires a time step less than or

equal to 5 � 10�7 to be stable. We run the explicit method
for a duration equal to 0.01. Plotting the number of sites that
change drainage direction in each time step as a function of
time, we clearly see that most of the changes occur between
t = 0 and t = 0.0025 (Figure 3). In this period the network
develops from the random distribution of elevations. Small
differences can lead to very different final results, as already
pointed out by Willgoose et al. [1991a].
[13] The solution is then compared with the solution of

the implicit method with the same initial conditions. In the
implicit method we utilize different time steps, ranging from
0.005 (1 iteration) to 2.5 � 10�6 (2000 iterations). Assum-
ing that the explicit method returns the exact solution, the
error is calculated as the standard deviation of the implicit
result with respect to the explicit one. The error is then
normalized dividing it by the standard deviation of the
elevations at the end of the simulation with respect to the
initial elevations.

Figure 5. (a) Error of the implicit method as a function of
the time step for the test case shown in Figure 2. Open
circles refer to the first simulation from t = 0 to t = 0.0005
(Figure 4), while the solid circles refer to the second
simulation from t = 0.0005 to t = 0.001 (Figure 6). The
initial condition for the second simulation is the result of the
explicit method for the first simulation. (b) ratio of the CPU
time used by the implicit method relative to the CPU time
used by the explicit method.

Figure 6. (opposite) Simulation 2: (a) initial conditions,
corresponding to the result of the first simulation with the
explicit method, (b) changes in elevation distribution at t =
0.01 using the explicit formulation (10000 iterations), and
(c) changes in elevation distribution at t = 0.01 using the
implicit formulation (10 iterations).
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[14] The first simulation is carried out from t = 0 to t =
0.005 (Figure 3); the initial condition is a flat surface where
erosion has not formed drainage patterns yet (Figure 4a).
The error decreases with the reduction of the time step in the
implicit method, corresponding to an increase in the number
of iterations (Figure 5a, open circles). The high error value
for the implicit scheme with few iterations is due to the
development of a different channel network on the surface
(Figures 4b and 4c). Differences arise from the fact that the
discharge is kept ‘‘frozen’’ in the implicit method and does
not vary during the simulation. Still the result is qualita-
tively similar, and the CPU time used is considerably less
than the CPU time used for the explicit. For a more accurate
result the number of iterations in the implicit scheme has to
be increased, with consequent increment of CPU time
(Figure 5b). A second simulation was performed running
the two models from t = 0.005 to t = 0.01 utilizing the
elevations calculated with the explicit method at time t =
0.005 as initial conditions (Figure 6a). In this way, alluvial
erosion acts in a channel network already developed, and
drainage area variations are almost nonexistent (Figures 6b
and 6c). Now the error for the implicit method is <6% even
with a single iteration (Figure 5a, solid circles).
[15] In situations where the drainage area does not vary

significantly, as between t = 0.005 and t = 0.01 (Figure 3),
the superiority of the implicit method is clear, with an
utilization of CPU time <1% of that required for the
explicit formulation. The rate of change in drainage area
(Figure 3) might then be utilized to modify in an adaptive
way the time step of the implicit method. For example, in
the first simulation we can start with a time step equal to
5 � 10�6 for 200 iterations, then switch to a time step of
5 � 10�4 for the remaining 9 iterations. The resulting
error is <7%, and the computational time is one tenth of
the explicit one. Other situations where the implicit
method has to be carefully applied are in locations where
alluvial deposition exceeds alluvial erosion. In these cases
(as, for example, in alluvial fans), deposition increases
local elevations, resulting in a high probability of channel
avulsion.

4. Conclusions

[16] The use of an implicit finite difference method for
alluvial sediment transport in drainage basin evolution

models presents several advantages. The method is uncon-
ditionally stable, conserving sediment mass for any time
step adopted. The formulation can be easily extended to
incorporate other important processes in landscape evolu-
tion, such as soil creep and rain splash diffusion. The
method can be applied both to Cartesian grids and unstruc-
tured triangular grids. Computationally, the implicit scheme
is very efficient, reducing the CPU time by up to a factor
100 with respect to an explicit formulation. Since the
scheme does not update the drainage area during a time
step, particular attention has to be paid in situations where
the distribution of drainage area changes fast. In these cases,
such as the first stages of channalization of flat surfaces or
channel avulsion in alluvial depositional environments, a
small time step in the implicit scheme is necessary to follow
the transient dynamics. Limitations in the method applic-
ability may finally arise when modeling mixed grain sizes
routing and sediment stratigraphy.
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